Scale-Space Tracking of Critical Points in 3D Vector Fields

نویسندگان

  • Thomas Klein
  • Thomas Ertl
چکیده

Scale-space techniques are very popular in image processing since they allow for the integrated analysis of image structure. The multi-scale approach enables one to distinguish between important features such as edges and smallscale features such as numerical artifacts or noise. In general, the same properties hold for vector fields such as flow data. Many flow features, e.g. vortices, can be observed on multiple scales of the data and also many features that can be detected are essentially artifacts of the employed interpolation scheme or originate from noise in the data. In this paper, we investigate an approach based on scale-space hierarchies of three-dimensional vector fields. Our main interest concerns how vector field singularities can be tracked over multiple spatial scales in order to assess the importance of a critical point to the overall behavior of the underlying flow field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some geometrical properties of the oscillator group

‎We consider the oscillator group equipped with‎ ‎a biinvariant Lorentzian metric‎. ‎Some geometrical properties of this space and the harmonicity properties of left-invariant vector fields on this space are determined‎. ‎In some cases‎, ‎all these vector fields are critical points for the energy functional‎ ‎restricted to vector fields‎. ‎Left-invariant vector fields defining harmonic maps are...

متن کامل

Harmonicity and Minimality of Vector Fields on Lorentzian Lie Groups

‎We consider four-dimensional lie groups equipped with‎ ‎left-invariant Lorentzian Einstein metrics‎, ‎and determine the harmonicity properties ‎of vector fields on these spaces‎. ‎In some cases‎, ‎all these vector fields are critical points for the energy functional ‎restricted to vector fields‎. ‎We also classify vector fields defining harmonic maps‎, ‎and calculate explicitly the energy of t...

متن کامل

Feature Flow Fields in Out-of-Core Settings

Feature Flow Fields (FFF) are an approach to tracking features in a time-dependent vector field v. The main idea is to introduce an appropriate vector field f in space-time, such that a feature tracking in v corresponds to a stream line integration in f . The original approach of feature tracking using FFF requested that the complete vector field v is kept in main memory. Especially for 3D vect...

متن کامل

DPML-Risk: An Efficient Algorithm for Image Registration

Targets and objects registration and tracking in a sequence of images play an important role in various areas. One of the methods in image registration is feature-based algorithm which is accomplished in two steps. The first step includes finding features of sensed and reference images. In this step, a scale space is used to reduce the sensitivity of detected features to the scale changes. Afterw...

متن کامل

Monodromy problem for the degenerate critical points

For the polynomial planar vector fields with a hyperbolic or nilpotent critical point at the origin, the monodromy problem has been solved, but for the strongly degenerate critical points this problem is still open. When the critical point is monodromic, the stability problem or the center- focus problem is an open problem too. In this paper we will consider the polynomial planar vector fields ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006